21 research outputs found

    Thermomechanical Stability of Ultrananocrystalline Diamond

    Get PDF
    We have measured mechanical stiffness and dissipation in ultrananocrystalline diamond (UNCD) from 63 K to 450 K using microcantilever resonators in a custom ultrahigh vacuum (UHV) atomic force microscope. UNCD exhibits a temperature coefficient of modulus that is found to be extremely low: -26 ppm/K, which is close to the previously measured value of -24 ppm/K for single crystal diamond. The magnitude and the temperature dependence of dissipation are consistent with the behavior of disordered systems. The results indicate that defects, most likely at the grain boundaries, create the dominant contribution to mechanical dissipation. These measurements of modulus and dissipation versus temperature in this temperature range in UNCD establish the nanostructure’s effect on the thermomechanical stability and suggest routes for tailoring these properties

    Dielectric properties of hydrogen-incorporated chemical vapor deposited diamond thin films

    Get PDF
    Diamond thin films with a broad range of microstructures from a ultrananocrystalline diamond (UNCD) form developed at Argonne National Laboratory to a microcrystalline diamond (MCD) form have been grown with different hydrogen percentages in the Ar/CH4 gas mixture used in the microwave plasma enhanced chemical vapor deposition (CVD) process. The dielectric properties of the CVD diamond thin films have been studied using impedance and dc measurements on metal-diamond-metal test structures. Close correlations have been observed between the hydrogen content in the bulk of the diamond films, measured by elastic recoil detection (ERD), and their electrical conductivity and capacitance-frequency (C-f) behaviors. Addition of hydrogen gas in the Ar/CH4 gas mixture used to grow the diamond films appears to have two main effects depending on the film microstructure, namely, (a) in the UNCD films, hydrogen incorporates into the atomically abrupt grain boundaries satisfying sp2 carbon dangling bonds, resulting in increased resistivity, and (b) in MCD, atomic hydrogen produced in the plasma etches preferentially the graphitic phase codepositing with the diamond phase, resulting in the statistical survival and growth of large diamond grains and dominance of the diamond phase, and thus having significant impact on the dielectric properties of these films

    Mechanical stiffness and dissipation in ultrananocrystalline diamond microresonators

    Get PDF
    We have characterized mechanical properties of ultrananocrystalline diamond UNCD thin films grown using the hot filament chemical vapor deposition HFCVD technique at 680 °C, significantly lower than the conventional growth temperature of 800 °C. The films have 4.3% sp2 content in the near-surface region as revealed by near edge x-ray absorption fine structure spectroscopy. The films, 1 m thick, exhibit a net residual compressive stress of 3701 MPa averaged over the entire 150 mm wafer. UNCD microcantilever resonator structures and overhanging ledges were fabricated using lithography, dry etching, and wet release techniques. Overhanging ledges of the films released from the substrate exhibited periodic undulations due to stress relaxation. This was used to determine a biaxial modulus of 8382 GPa. Resonant excitation and ring-down measurements in the kHz frequency range of the microcantilevers were conducted under ultrahigh vacuum UHV conditions in a customized UHV atomic force microscope system to determine Young’s modulus as well as mechanical dissipation of cantilever structures at room temperature. Young’s modulus is found to be 79030 GPa. Based on these measurements, Poisson’s ratio is estimated to be 0.0570.038. The quality factors Q of these resonators ranged from 5000 to 16000. These Q values are lower than theoretically expected from the intrinsic properties of diamond. The results indicate that surface and bulk defects are the main contributors to the observed dissipation in UNCD resonators

    Temperature dependence of mechanical stiffness and dissipation in ultrananocrystalline diamond

    Get PDF
    Ultrananocrystalline diamond (UNCD) films are promising for radio frequency micro electro mechanical systems (RF-MEMS) resonators due to the extraordinary physical properties of diamond, such as high Young’s modulus, quality factor, and stable surface chemistry. UNCD films used for this study are grown on 150 mm silicon wafers using hot filament chemical vapor deposition (HFCVD) at 680°C. UNCD fixed free (cantilever) resonator structures designed for the resonant frequencies in the kHz range have been fabricated using conventional microfabrication techniques and are wet released. Resonant excitation and ring down measurements in the temperature range of 138 K to 300 K were conducted under ultra high vacuum (UHV) conditions in a custom built UHV AFM stage to determine the temperature dependence of Young’s Modulus and dissipation (quality factor) in these UNCD cantilever structures. We measured a temperature coefficient of frequency (TCF) of 121 and 133 ppm/K for the cantilevers of 350 ìm and 400 ìm length respectively. Young’s modulus of the cantilevers increased by about 3.1% as the temperature was reduced from 300 K to 138 K. This is the first such measurement for UNCD and suggests that the nanostructure plays a significant role in modifying the thermo-mechanical response of the material. The quality factor of these resonators showed a moderate increase as the cantilevers were cooled from 300 K to 138 K. The results suggest that surface and bulk defects significantly contribute to the observed dissipation in UNCD resonators

    Laser-annealing Josephson junctions for yielding scaled-up superconducting quantum processors

    Full text link
    As superconducting quantum circuits scale to larger sizes, the problem of frequency crowding proves a formidable task. Here we present a solution for this problem in fixed-frequency qubit architectures. By systematically adjusting qubit frequencies post-fabrication, we show a nearly ten-fold improvement in the precision of setting qubit frequencies. To assess scalability, we identify the types of 'frequency collisions' that will impair a transmon qubit and cross-resonance gate architecture. Using statistical modeling, we compute the probability of evading all such conditions, as a function of qubit frequency precision. We find that without post-fabrication tuning, the probability of finding a workable lattice quickly approaches 0. However with the demonstrated precisions it is possible to find collision-free lattices with favorable yield. These techniques and models are currently employed in available quantum systems and will be indispensable as systems continue to scale to larger sizes.Comment: 9 pages, 6 figures, Supplementary Information. Update to correct typo in author name and in text. Updated acknowledgements and corrected typo in acknowledgement
    corecore